КОМПЛЕКСООБРАЗОВАНИЕ В КАЧЕСТВЕННОМ АНАЛИЗЕ, ковалентная связь, донорно-акцепторный механизм

КОМПЛЕКСООБРАЗОВАНИЕ В КАЧЕСТВЕННОМ АНАЛИЗЕ, ковалентная связь, донорно-акцепторный механизм, тема 4

Комплексными называют соединения, в которых хотя бы одна ковалентная связь образована по донорно-акцепторному механизму, т. е. с помощью ковалентной связи, при образовании которой на связывающую МО (молекулярную орбиту) переходят два электрона лишь одного из партнеров, так что новой электронной пары не образуется. Например, при образовании иона аммония NH4+ из молекулы аммиака и иона НГ на образующуюся четвертую связывающую МО переходят электроны только аммиака (пример на электронной схеме, стр. 50, Новый справочник по химии для школьников и абитуриентов / Гузей Л.С, Кузнецов В.Н. Под редакцией проф. С.В. Дунаева. - 1-е изд. - М.: Большая медведица, 1998 - 354 с).

Поскольку подобное описание удобно при рассмотрении многих комплексных (координационных) соединений, донорно-акцепторную связь нередко называют также координационной. По физической природе донорно-акцепторная связь не отличается от обычной ковалентной связи, особенно если рассматривать образование соответствующих молекул непосредственно из атомов. Способность образовывать комплексные соединения наиболее сильно выражена у d-эдементов больших периодов периодической системы. Естественно при их анализе комплексообразование должно играть важную роль.

Как известно все d-элементы это металлы (железо, цинк, марганец, медь) с широким спектром химических свойств и их определение осуществляется с помощью гексцианоферрата калия.

В соответствии с координационной теорией Вернера центральный ион молекулы комплексного соединения, несущий обычно положительный заряд называется комплексообразователем. Он удерживает (координирует) в непосредственной близости некоторое число ионов с противоположным зарядом (или полярных молекул), называемых лигандами (или аддендами). Ион-комплексообразователь и лиганды вместе составляют внутреннюю координационную сферу.

Важнейшие лиганды - это нейтральные, но полярные молекулы

(Н2О, NH3, NO, СО и др.), а также многие анионы (СГ, Br ", NO2\ CN, ОН, S2O3 "2, Г).

Лиганды - монодентантные (NH3, метиленамин - CH3NH2, NO2", CN"), занимающие одно место во внутренней координационной сфере, и полидентантные (СО3", SO4, S2O3") - два и более мест.

Двухзарядный анион этилендиаминтетрауксусной кислоты (ЭДТА) - пример 4-хдентантного лиганда.

Следовательно, дентантность определяется числом атомов в лиганде, которыми он связан с комплексообразователем. Число ионов или полярных молекул, координируемое комплексообразователем во внутренней сфере, называют молекулами-отрицательными» - ионами. Эти" лигандев (донорных групп), координированных центральным атомом (акцептором), и образуют внутреннюю координационную сферу. При изображении формул комплексных соединений комплекс, составляющий внутреннюю координационную сферу, изображается в квадратных скобках.

Т.о. структура комплексного соединения представлена координационной (внутренней) сферой, состоящей из центральной частицы - комплексообразователя (ион или атом) - и окружающих ее лигандов (ионы противоположного знака или молекулы). Т.о. внутренняя сфера (комплекс) может быть анионом, катионом и не иметь заряда.

Например, в комплексном соединении

K3[Fe(CN)6],

внешняя сфера ЗК, внутренняя сфера [Fe(CN)6], где Fe3+ -комплексообразователь, a 6CN - лиганды, причем 6 - координационное число. Максимальное число лигандов, которое способен удерживать центральный ион, наз-ся координационным числом. Ионы, находящиеся за пределами координационной сферы, образуют внешнюю сферу комплексного соединения. Т.о. комплексное соединение (как правило) в узлах кристаллической решетки содержит комплекс, способный к самостоятельному существованию в растворе.

А. Вернер систематически изложил свою теорию и экспериментальный материал, подтверждающий ее положения и выводы в работе «Новые воззрения в области неорганической химии» в 1905 г. Он показал, в частности, что платина (IV), кобальт (111), иридий (111) и хром обладают координационным числом 6, а платина (11), палладий (11), медь (11) проявляют 4-е побочных валентности (т.е. координационное число равно 4). Известны комплексообразователи с координационными числами 2, 3, 7 и 8. Главные валентности комплексообразователя насыщаются только отрицательными ионами. В тоже время побочные валентности могут насыщаться как отрицательными ионами, так и нейтральными молекулами.

Этим и объясняется, что в соединениях, содержащих хлор, только ионы хлора могут осаждаться нитратом серебра, атомы же хлора, непосредственно связанные с комплексообразователем, не реагируют с нитратом серебра, например,

[Сг(Н2О)2(№1з)зС1]С12.

А. Вернер пользуясь определениями электропроводности, установил число ионов в соединениях и тем самым состав внутренней координационной сферы. Для примера определим заряд, координационное число и степень окисления комплексообразователя в комплексной соли K4[Fe(CN)6]. Заряд комплексного иона равен заряду внешней сферы, но противоположен ему по знаку. Координационное число комплексообразователя равно числу лигандов, координированных вокруг него, т.е. 6. Степень окисления комплексобразователя определяется также, как степень окисления атома в любом соединении, исходя из того, что сумма степеней окисления всех атомов в молекуле равна нулю. Заряды нейтральных молекул (Н2О, NH3) равны нулю.

Заряды кислотных остатков определяют из формул соответствующих к-т, т.о. степень окисления комплексообразователя +2. Многие соли, также как и гексацианферрат калия, являясь сильным электролитом, в водном р-ре необратимо диссоциируют на ионы внешней и внутренней сфер K4[Fe (С1Ч)б] = 4К7+[Те(СК)бГ\ т0 комплексный ион диссоциирует обратимо и в незначительной степени на составляющие его частицы: [Fe (CN)6]4~<-»Fe2++6CN~ Обратимый процесс характеризуется своей константой равновесия, которая в данном случае называется константой нестойкости (KJ комплекса.

KH=[Fe+] [CN"]7 [[Fe(CN)6]'"].

Чем меньше Кн тем более прочен данный комплекс Как правило, координационное число атома металла не совпадает с его степенью окисления: обычно координационное число атома металла выше его степени окисления. Число координационных связей, образуемых одним и тем же лигандом с одним атомом металла-комплексообразователя, наз-ся дентантностъю (старое наз-ие координационная емкость). Т.о. лиганды могут быть монодентантными и полидентантными (би, три, тетра, пента, гексадентантными). Монодентантные лиганды - это анионы F, СГ, Вг", Г, Н", CN", NO"2, SCN", нейтральные молекулы, имеющие только один донорный атом - аммиак NH3, первичные амины R - NH2, молекулы воды. Они обычно образуют одну координационную связь (кроме образования мостиковых связей между 2-мя атомами металла), стр. 184, 1-ый том, Харитонов. Координационная связь металл-лиганд может быть полярной ковалентной, по происхождению донорно-акцепторной, так в тетрааммиачном комплексе меди(11)[Си(№1з)4]2+, донорно-акцепторная связь Си11-*-NH3.

Каждая такая координационная связь медь(11)-аммиак образуется за счет оттягивания «свободной» электронной пары от молекулы аммиака на пустую орбиталь меди(П), что в записи химической формулы обозначается стрелкой, направленной от донора к акцептору. Наиболее распространенными являются три подхода к пониманию природы химической связи в координационных соединениях металлов: теория кристаллического поля, метод валентных связей и теория молекулярных орбиталей. Комплексные соединения могут быть катионного, анионного типа и комплексами-неэлектролитами, точнее слабыми электролитами. Внутренняя сфера комплексов катионного типа несет положительный заряд, например, [Cu(NH3)4]+,[Ag(NH3)2], [Co(NCS)2En2] -En - молекула этилендиамина. Внутренняя сфера комплексов анионного типа несет отрицательный заряд, например, [Ag(S2O3)2]J~, [Sb(OH)6]+, [Со(Ж>2)б]"". Внутренняя сфера комплексов-неэлектролитов не несет никакого электрического заряда, например, [R(NH3)2C12]. He менее важными являются выводы А. Вернера, касающиеся стереохимии комплексных соединений. Основное положение состоит в том, что молекулы и ионы, связанные с центральным ионом побочными валентностями, располагаются вокруг него в пространстве как в кристаллическом состоянии, так и в растворах. Пространственное строение внутренней сферы комплексов может быть линейным, треугольным, квадратным, тетраэдрическим и т.д. в зависимости от природы центрального атома металла, лигандов, внешнесферного окружения. Комплексные соединения катионного и анионного типов чаще всего растворимы в воде, комплексы-неэлектролиты, как правило, малорастворимы в воде. Вначале, как уже указывалось выше на примере ферроцианида калия происходит первичная диссоциация - отщепляются ионы внешней среды. При первичной диссоциации комплекса, имеющего ионы во внешней сфере, соединение ведет себя как сильный электролит. Затем происходит вторичная диссоциация уже по типу слабого электролита - отщепляются лиганды внутренней сферы.

Ступень диссоциации внутренней сферы комплекса

Каждая ступень диссоциации внутренней сферы комплекса характеризуется своей константой химического равновесия, формулы стр. 191.

  1. Внутрикомплексные (хелатные) соединения.
  2. Биокоординационные соединения (хелаты);
  3. Применение хелатов в аналитической химии;
  4. Роль биокоординационных соединений в живых объектах.

. Интересным особым классом комплексов являются так называемые внутрикомплексные соединения (иначе хелаты), в которых комплексообразователь одновременно связан с двумя или более атомами одного и того же лиганда (полидентантные лиганды) [1]. Простейшим примером может служить гликоколят меди [(NH2CH2COO)Cu], в котором каждый аминоацетат-анион присоединен к Си2+ валентной связью через кислород и донорной через азот. Центральный атом оказывается тем самым как бы втянутым внутрь лиганда (от чего соединения такого типа и получило название внутрикомплексным). Такая функция лигандов характерна, в частности, для «трилонов» (см. ниже).

Как правило, типичные хелаты лучше растворимы в органических растворителях, чем в воде. Их водные растворы показывают ничтожную электропроводность. По отношению к различным внутрикомплексные соединения большей частью весьма Например, из раствора гликоколята меди последняя не сероводородом.

. Образование хелатов часто используется в аналитической химии, для маскировки катионов при определении микроколичеств элементов в различных биологических объектах.

  • Полидентантные лиганды образуют различные циклы, например:
  • реактивам устойчивы, осаждается кислота
  • Никель с диметилглеоксимом образует два цикла.
  • Комплекс Ti с хроматхолевой кислотой содержит 6 циклов.
  • Строение и устойчивость бионеорганических соединений с полидентантными лигандами зависит от величины цикла и его сопряженности].

Отдельно рассмотрим полидентантные лиганды в этилендиаминотетрауксусной кислоте. С такими катионами как Са + и Mg лиганды образуют четырех членные циклы, а также они склонны к образованию двух ядерных комплексов, образованию комплексов с дополнительной связью Me - Me. Такие комплексы применяются для количественного определения Са2+, Mg2+ в воде.

Фосфоглицериновая кислота присоединяет вторую фосфатную группу от аденозинтрифосфата (АТФ), а дифосфоглицериновая кислота восстанавливается с помощью НАД-Н в фосфотриозу, участвующую в синтезе Сахаров от Сз до С7. Продуктами этой стадии являются АТФ и фруктозофосфат, превращающийся в дальнейшем в глюкозу и крахмал.

Гемоглобин - гемсодержащий белок, обратимо связывающий молекулярный кислород (рис. 13.7):

нь + о2-ньо2

Из рис. 13.8 видно, что как и Mg2+ в хлорофилле, Fe2+ связан с четырьмя атомами азота пиррольных колец порфириновой системы (протопорфирина IX) и с атомами азота имидазольного кольца остатка аминокислоты - гистидина, входящего в состав полипептидной части гемоглобина. Шестое координационное место занимает дикислород или другие малые лиганды (СО в карбоксигемоглобине НЬСО).

Молекула гемоглобина

НЬСО образуется в сотни раз быстрее, чем НЬО2, чем и объясняется токсичное действие СО. Еще более токсичен NO. Роль белковой части

3. К числу соединений этого типа относятся такие важные для жизни вещества, как хлорофилл и гемоглобин. Со структурной точки зрения оба эти катализатора жизненных процессов сходны друг с другом.

Биокоординационные соединения выполняют важнейшие функции в растительных и животных организмах. Они в составе ферментов катализируют реакции переноса кислорода, окислительно-восстановительные и гидролитические процессы, чаще всего биокоординационные соединения представляют собой металлсодержащие макромолекулы.

Связанный с белком металл может контролировать конформацию биомакромолекул. Так, Mg2+, Ca + стабилизируют двойную спираль ДНК, тогда как Си2+ благоприятствует ее раскручиванию. В этом параграфе мы ограничимся некоторыми примерами биокоординационных соединений, ответственных, в частности, за фотосинтез, перенос кислорода, окислительно-восстановительные процессы.

Хлорофилл. Этим термином определяют группу магнийсодержащих пигментов, ответственных за процессы фотосинтеза. Наиболее распространенным является хлорофилл а, который содержится во всех растениях, образующих кислород в процессе фотосинтеза. Кроме него известны не менее восьми разновидностей.

В процессе фотосинтеза солнечная энергия поглощается хлорофиллом. Высвобождаемый кислород первоначально принадлежал воде. Водород восстанавливает фермент никотинамидадениндинуклеотид (НАД), в результате чего образуются НАД-Н и Н+, которые принимают участие в цикле синтеза углеводов. Эта стадия называется световой.

Купить рН-метры, pH meters в Санкт-Петербурге

В каталоге товаров/продукции представлены рН-метры - pH метры Россия, карманные рН-метры, портативные рН-метры, стационарные рН-метры, рН-метры для пищевой промышленности, категории: pH meter made in Russia, pocket pH meters, portable pH meters, stationary pH meters, pH meters for food industry, ; портативные, стационарные лабораторные модели измерителей водородного показателя (показателя pH), компактные карманные приборы рН-метры, автономные портативные рН-метры для оперативного определения кислотности или щелочности среды, лабораторные модели стационарные измерители водородного показателя (показателя pH), ,

pH метры Россия

Подробнее... Купить pH метры производства Россия - pH meter made in Russia в ХИМСНАБ-СПБ, контактный телефон +7-812-337-18-93. Купить портативные, стационарные pH метры Россия в Санкт-Петербурге по выгодной цене. компактные модели рН-метров, приборов для измерения водородного показателя.

карманные рН-метры

Подробнее... Купить карманные рН-метры - pocket pH meters в ХИМСНАБ-СПБ, контактный телефон +7-812-337-18-93. Легкие и удобные устройства предназначены для оперативного определения кислотности или щелочности среды / определения уровня pH среды в полевых условиях, когда использование более громоздких лабораторных «портативных рН-метров»; «стационарных рН-метров» приборов зат...

рН-метры для пищевой промышленности

Подробнее... Приборы для анализа пищевых продуктов - купить рН-метры для пищевой промышленности - pH meters for food industry в ХИМСНАБ-СПБ, контактный телефон +7-812-337-18-93. Универсальные измерительные приборы контроля качества продуктов питания применяются в различных лабораториях и производстве. Купить прибор в Санкт-Петербурге по выгодной цене. рН-метры. В каталоге ХИМСНАБ-СПБ представлены...

Купить электроды для измерения pH, анализаторы pH-электроды для рН-метров

Выносные электроды предназначеных для проведения измерений в лабораторных и полевых измерений рН, определения окислительно-восстановительного потенциала, удельной электрической проводимости и температуры воды, водных растворов. Анализаторы состоят из измерительного преобразователя и комбинированных датчиков (первичных преобразователей), обеспечивающих измерение параметров водной среды. Измерительные приборы отличает высокая производительность и точность осуществляемых измерений.

Купить электроды и датчики, electrodes and sensors в Санкт-Петербурге

В каталоге товаров/продукции представлены электроды и датчики - Ион-селективные электроды, pH-электроды, электроды для измерения pH, датчики ОВП, редокс-электроды, датчики проводимости, датчики температуры, кислородные датчики, электроды вспомогательные (сравнения), категории: Ion-selective electrodes, pH-electrodes, sensors ORP, conductivity sensors, temperature sensors, oxygen sensors, the auxiliary electrode (comparison), ; Ион-селективные электроды, pH-электрод, датчики ph, электрод ph метра, электроды для измерения ph, измерительный электрод ph, рН-метрический электрод, измерение значения концентрации ионов водорода, определение концентрации ионов водорода, электроды датчики ОВП, редокс-электроды, измерение окислительно-восстановительного потенциала, многодиапазонные зонды и электроды, электроды датчики проводимости, электрод сенсор датчик температуры, электрод сенсор датчик кислородный, специальные лабораторные и промышленные электроды сравнения, электроды вспомогательные,

Ион-селективные электроды

Подробнее... Купить Ион-селективные электроды - Ion-selective electrodes в ХИМСНАБ-СПБ, контактный телефон +7-812-337-18-93. Купить Ион-селективный электрод в Санкт-Петербурге по выгодной цене. Проведение лабораторных ионометрических исследований, ионометрический анализ образцов требует наличия анализаторов и специализированного лабораторного оборудования: ионоселективного электрода, вспомогательного...

pH-электроды, электроды для измерения pH

Подробнее... Купить pH-электроды (pH-electrodes) лабораторные измерительные устройства, анализаторы жидкости, растворов, воды и водных сред используемые для получения точных и воспроизводимых показаний приборов, опредлеление кислотности или щелочности выраженной в виде pH. В комании ХИМСНАБ-СПБ, контактный телефон +7-812-337-18-93 можно приобрести рН-электроды для рН-метров, анализаторов воды предназначе...

датчики ОВП, редокс-электроды

Подробнее... Индикаторные элементы для проведения измерения окислительно-восстановительных потенциалов. В обратимых окислительно-восстановительных системах позволяют проводить определение концентрации компонентов. Специализированные электроды и датчики ОВП, редокс-электроды имеют особые электрохимические характеристики для потенциометрических измерений, регистрации ОВП растворов. Измерительное оборудован...

датчики проводимости

Подробнее... Купить многодиапазонные датчики проводимости - conductivity sensors для кондуктометров использующих выносной (сменный) электрод в ХИМСНАБ-СПБ, контактный телефон +7-812-337-18-93. Купить датчик проводимости в Санкт-Петербурге по выгодной цене. Специализированные электроды и датчики, electrodes and sensors с подключаемым кабелем используемые для определения проводимости и солесодержания в вод...

кислородные датчики

Подробнее... Купить кислородные датчики - oxygen sensors для стационарных и портативных оксиметров в ХИМСНАБ-СПБ, контактный телефон +7-812-337-18-93. Модели стандартных полярографических датчиков растворенного кислорода применяемых в настольных и портативных приборах. Отдельные модели датчиков кислорода состоят из платинового катода, серебряного анода и фторопластовой мембраны. Конструкции датчика делаю...

электроды вспомогательные (сравнения)

Подробнее... Купить электроды вспомогательные (сравнения) - auxiliary electrode (comparison) в ХИМСНАБ-СПБ, контактный телефон +7-812-337-18-93. Лабораторный вспомогательный или опорный электрод, заполненный концентрированным раствором КСl - электролит является вторым по значимости элементом измерительного прибора «рН-метра» . Данный тип электрода позволяет создать опорную точку, относитель...
индикаторная бумага в ПОЛОСКАХ или индикаторная бумага в КАТУШКАХ. Подобрать по диапазону pH: 0 — 6 рН; 1 — 12 рН; 4,5 — 10 рН; 7 — 14 рН; 1 — 11 рН; 5,5 — 9 рН; 1 — 14 рН; 0 — 14 рН; 0 — 12 рН, также в каталоге ХИМСНАБ-СПБ лабораторного оборудования и приборов, раздела измерительные приборы можно приобрести приборы для измерения водородного показателя pH: «рН-метры»; «карманные рН-метры»; «портативные рН-метры»; «стационарные рН-метры» и «pH-электроды»
Оставьте заявку ON-LINE или позвоните. Менеджер компании ответит на ваши вопросы.

Широкий ассортимент

В каталоге компании более 4000 наименований продукции в 200 товарных категориях: химические реактивы, лаб. оборудование и посуда, аксессуары и принадлежности для лабораторий, различные виды удобрений, химическое сырьеи многе другое. Можно подобрать продукцию воспользовавшись фильтром характеристик.

Опт и розница

Осуществляем продажу оптом и в розницу. В каталоге Химснаб-СПБ можно заказать широкий спектр веществ различных квалификаций: «Технический» («тех.»); «Чистый» («ч.»); «Чистый для анализа» («ч.д.а.»); «Химически чистый» («х.ч.»); «Особо чистый» («ос.ч.»); имп.: неорганические реактивы, органические реактивы, особо чистые вещества, растворы (буферные растворы, растворы для очистки и хранения электродов, растворы для кондуктометров), химическое сырье и компоненты. Продукции для лабораторных исследований.

Проверенные поставщики

Компания реализует товары и продукцию только от проверенных поставщиков гарантирующих качестно продукции.

Консультация по продукции

Менеджеры компании проконсультируют вас по ассортименту реализуемой продукции, звоните в рабочее время

Доставка

География потребителей выходит за пределы России, компания "Химснаб-СПБ" осуществляет доставку приобретаемых товаров и продукции по Санкт-Петербургу, Ленинрадской обл, России и странам СНГ.

Индивидуальный подход

Строим свое сотрудничество с клиентом с учетом всех пожеланий клиента. Гибкий и индивидуальный подход к каждому клиенту, ориентированность на долгосрочные партнерские отношения, строгое соблюдение оговоренных сроков и предоставления документов заказчику являются неоспоримыми преимуществами компании "Химснаб-СПБ". Мы заботимся о том, чтобы каждый наш клиент остался доволен приобретаемой продукцией и полученным результатом, который является нашим общим успехом!

Малотоннажная химия

Реализация продукции малотоннажной химии: продукция химической и нефтехимической промышленности. Малотоннажная химия дает возможность на скромном оборудовании и в небольших объемах производить дорогостоящие модификаторы, пластификаторы, ингибиторы и другие микродобавки, способные наделять конечный продукт новыми свойствами

Комплексное снабжение, оснащение

Компания Химснаб-СПБ имеет многолетний опыт работы на рынке химической продукции и лабораторного оборудования. Компания тесно сотрудничает со многими промышленными и производственными организациями и имеет возможность осуществлять комплексное снабжение и оснащение предприятии различных отраслений промышленности необходимым оборудованием и расходными материалами.

Предствленная информация на страницах данного интернет-сайта и в каталоге продукции носит исключительно информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями Статьи 437 (2) Гражданского кодекса РФ. Для получения подробной информации о наличии и стоимости указанных товаров и (или) услуг,обращайтесь к менеджерам отдела продаж: форма обратной связи, e-mail, телефон.

Реализация продукции для сельского хозяйства, химической, строительной, нефтегазовой, металлургической, текстильной, кожевенной, и других отраслей промышленности.

Рады проконсультировать Вас по подбору рН-метров, рН-электродов и другого оборудования.

Менеджер ХИМСНАБ-СПБ

Возникли вопросы, звоните: пн-пт с 9:00 до 17:00 или оставьте Ваш телефон и мы Вам перезвоним.
Форма с указанным ID не существует.
Офис-склад компании: СПб, ул. Швецова, 23. Ст. Метро “Нарвская”. Открыть страницу Контакты

Предлагаем широкие возможности для комплектации химической продукцией производства и исследовательских лабораторий в различных отраслях промышленности.

«ХИМСНАБ-СПБ» - Ваш надежный поставщик

Поставка химической продукции и лабораторного оборудования является ключевым направлением деятельности компании с 1996 года.

Компания «ХИМСНАБ-СПБ» успешно осуществляет поставку широкого спектра лабороторного оборудования, приборов и другой химической продукции на рынке Северо-Запада Российской Федерации.


  • Широкий ассортимент продукции
  • Опт и розница
  • Консультация по продукции
  • Доставка транспортными компаниями
  • Индивидуальный подход
  • Проверенные поставщики
  • Малотоннажная химия
  • Комплексное снабжение, оснащение
О компании Химснаб-СПБ

Похожие статьи