| Мышьяк | |
|---|---|
| Атомный номер | 33 | 
| Внешний вид простого вещества | 
					 | 
			
| Свойства атома | |
| 
					Атомная масса (молярная масса)  | 
				74,92159 а. е. м. (г/моль) | 
| Радиус атома | 139 пм | 
| 
					Энергия ионизации (первый электрон)  | 
				946,2(9,81) кДж/моль (эВ) | 
| Электронная конфигурация | [Ar] 3d10 4s2 4p3 | 
| Химические свойства | |
| Ковалентный радиус | 120 пм | 
| Радиус иона | (+5e)46 (-3e)222 пм | 
| 
					Электроотрицательность (по Полингу)  | 
				2,18 | 
| Электродный потенциал | 0 | 
| Степени окисления | 5, 3, −3 | 
| Термодинамические свойства простого вещества | |
| Плотность | 5,73 (grey arsenic) г/см³ | 
| Молярная теплоёмкость | 25,05 Дж/(K·моль) | 
| Теплопроводность | (50,2) Вт/(м·K) | 
| Температура плавления | 1090 K | 
| Теплота плавления | n/a кДж/моль | 
| Температура кипения | 876 K | 
| Теплота испарения | 32,4 кДж/моль | 
| Молярный объём | 13,1 см³/моль | 
| Кристаллическая решётка простого вещества | |
| Структура решётки | ромбоэдрическая | 
| Параметры решётки | a=4,132 α=54,13 Å | 
| Отношение c/a | 2,805 | 
| Температура Дебая | 285 K | 
| As | 33 | 
| 74,9216 | |
| 4s24p3 | |
| Мышьяк | |
Мышьяк — химический элемент с атомным номером 33 в периодической системе, обозначается символом As. Представляет собой хрупкий полуметалл стального цвета.
Название мышьяка в русском языке связывают с употреблением его соединений для истребления мышей и крыс. Греческое название arsenikon происходит от персидского زرنيخ (zarnik) — «жёлтый аурипигмент». Иногда его производят от греческого «арсен» — сильный, мощный.
Мышьяк — рассеянный элемент. Содержание в земной коре 1,7·10-4% по массе. Это вещество может встречаться в самородном состоянии, имеет вид металлически блестящих серых скорлупок или плотных масс, состоящих из маленьких зернышек. Известно около 200 мышьяксодержащих минералов. В небольших концентрациях часто содержится в свинцовых, медных и серебряных рудах. Довольно часто встречаются два природных соединения мышьяка с серой: оранжево-красный прозрачный реальгар AsS и лимонно-желтый аурипигмент As2S3. Минерал, имеющий промышленное значение — арсенопирит (мышьяковый колчедан) FeAsS или FeS2•FeAs2, также добывают мышьяковистый колчедан — лёллингит (FeAs2).
Открытие способа получения так называемого металлического мышьяка (серого мышьяка) приписывают знаменитому средневековому алхимику Альберту Великому, жившему в XIII в. Однако гораздо ранее греческие и арабские алхимики умели получать мышьяк в свободном виде, нагревая «белый мышьяк» (то, что это триоксид мышьяка, а не простое вещество, было выявлено лишь в 1789 г. А. Л. Лавуазье, который и присвоил элементу название «арсеникум») с различными органическими веществами. Существует множество способов получения мышьяка: сублимацией природного мышьяка, способом термического разложения мышьякового колчедана, восстановлением мышьяковистого ангидрида и др.
Для получения металлического мышьяка чаще всего нагревают арсенопирит в муфельных печах без доступа воздуха. При этом освобождается мышьяк, пары которого конденсируются и превращаются в твердый мышьяк в железных трубках, идущих от печей, и в особых керамиковых приемниках. Остаток в печах потом нагревают при доступе воздуха, и тогда мышьяк превращается в As2O3. Металлический мышьяк получается в довольно незначительных количествах, и главная часть мышьякосодержащих руд перерабатывается в белый мышьяк, то есть в триоксид мышьяка — мышьяковистый ангидрид As2О3.
Мышьяк используется для легирования сплавов свинца, идущих на приготовление дроби, так как при отливке дроби башенным способом капли сплава мышьяка со свинцом приобретают строго сферическую форму, и кроме того, прочность и твёрдость свинца возрастают. Мышьяк особой чистоты (99,9999 %) используется для синтеза ряда практически очень ценных и важных полупроводниковых материалов — арсенидов и сложных алмазоподобных полупроводников. Сульфидные соединения мышьяка — аурипигмент и реальгар — используются в живописи в качестве красок и в кожевенной отрасли промышленности в качестве средств для удаления волос с кожи.
В пиротехнике реальгар употребляется для получения «греческого», или «индийского», огня, возникающего при горении смеси реальгара с серой и селитрой (ярко-белое пламя). Многие из мышьяковых соединений в очень малых дозах применяются в качестве лекарств для борьбы с малокровием и рядом тяжелых заболеваний, так как оказывают клинически значимое стимулирующее влияние на ряд функций организма, в частности, на кроветворение.
Из неорганических соединений мышьяка мышьяковистый ангидрид может применяться в медицине для приготовления пилюль и в зубоврачебной практике в виде пасты как некротизирующее лекарственное средство (тот самый «мышьяк», который закладывают в канал зуба перед удалением нерва и пломбированием). В настоящее время препараты мышьяка применяются в зубоврачебной практике редко из-за токсичности и возможности проведения безболезненной денервации зуба под местной анестезией.
Мышьяк и все его соединения ядовиты. При остром отравлении мышьяком наблюдаются рвота, боли в животе, понос, угнетение центральной нервной системы. Сходство симптомов отравления мышьяком с симптомами холеры длительное время позволяло успешно использовать соединения мышьяка (чаще всего, триоксид мышьяка) в качестве смертельного яда. Во Франции порошок триоксида мышьяка за высокую «эффективность» получил обиходное название «наследственный порошок» (фр. poudre de succession). В 1832 появилась надёжная качественная реакция на мышьяк — проба Марша, значительно повысившая эффективность раскрытия отравлений.
Помощь и противоядия при отравлении мышьяком: приём водных растворов тиосульфата натрия Na2S2O3, промывание желудка, приём молока и творога; специфическое противоядие — унитиол. ПДК в воздухе для мышьяка 0,5мг/м³. Работают с мышьяком в герметичных боксах, используя защитную спецодежду. Из-за высокой токсичности соединения мышьяка использовались Германией как отравляющие вещества в Первую мировую войну. Существует предположение, что соединениями мышьяка был отравлен Наполеон на острове Святой Елены.
На территориях, где в почве и воде избыток мышьяка, он накапливается в щитовидной железе у людей и вызывает эндемический зоб.
Мышьяк в малых дозах канцерогенен, его использование в качестве лекарства, «улучшающего кровь» (так называемый «белый мышьяк», например «Таблетки Бло с мышьяком», и др.) продолжалось до середины 1950-х гг., и внесло свой весомый вклад в развитие онкологических заболеваний.
Недавно широкую огласку получила техногенная экологическая катастрофа на юге Индии — из-за чрезмерного отбора воды из водоносных горизонтов мышьяк стал поступать в питьевую воду. Это вызвало токсическое и онкологическое поражение у десятков тысяч людей.
Считалось, что «микродозы мышьяка, вводимые с осторожностью в растущий организм, способствуют росту костей человека и животных в длину и толщину, в отдельных случаях рост костей может быть вызван микродозами мышьяка в период окончания роста».
Считалось также, что «При длительном потреблении небольших доз мышьяка у организма вырабатывается иммунитет: Этот факт установлен как для людей, так и для животных. Известны случаи, когда привычные потребители мышьяка принимали сразу дозы, в несколько раз превышающие смертельную, и оставались здоровыми. Опыты на животных показали своеобразие этой привычки. Оказалось, что животное, привыкшее к мышьяку при его употреблении, быстро погибает, если значительно меньшая доза вводится в кровь или под кожу.» Однако такое «привыкание» носит очень ограниченный характер, в отношении т. н. «острой токсичности», и не защищает от новообразований. Тем не менее, в настоящее время исследуется влияние микродоз мышьяксодержащих препаратов в качестве противоракового средства.
На территорииРоссийской Федерации в г. Скопин Рязанской области вследствие многолетней работы местного металлургического комбината СМК «Металлург» в могильниках предприятия было захоронено около полутора тысяч тонн пылеобразных отходов с 80 % содержанием мышьяка. С учётом того, что пяти миллиграммов мышьяка достаточно, чтобы отравить человека, в могильниках находится более 200 миллиардов смертельных доз мышьяка.
Соединения мышьяка
Классификация хим. элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона/
| IA | IIA | IIIB | IVB | VB | VIB | VIIB | ---- | VIIIB | ---- | IB | IIB | IIIA | IVA | VA | VIA | VIIA | VIIIA | |
| Период | ||||||||||||||||||
| 1 | 
				1 H Водород  | 
			
				2 He Гелий  | 
		||||||||||||||||
| 2 | 
				3 Li Литий  | 
			
				4 Be Бериллий  | 
			
				5 B Бор  | 
			
				6 C Углерод  | 
			
				7 N Азот  | 
			
				8 O Кислород  | 
			
				9 F Фтор  | 
			
				10 Ne Неон  | 
		||||||||||
| 3 | 
				11 Na Натрий  | 
			
				12 Mg Магний  | 
			
				13 Al Алюминий  | 
			
				14 Si Кремний  | 
			
				15 P Фосфор  | 
			
				16 S Сера  | 
			
				17 Cl Хлор  | 
			
				18 Ar Аргон  | 
		||||||||||
| 4 | 
				19 K Калий  | 
			
				20 Ca Кальций  | 
			
				21 Sc Скандий  | 
			
				22 Ti Титан  | 
			
				23 V Ванадий  | 
			
				24 Cr Хром  | 
			
				25 Mn Марганец  | 
			
				26 Fe Железо  | 
			
				27 Co Кобальт  | 
			
				28 Ni Никель  | 
			
				29 Cu Медь  | 
			
				30 Zn Цинк  | 
			
				31 Ga Галлий  | 
			
				32 Ge Германий  | 
			
				33 As Мышьяк  | 
			
				34 Se Селен  | 
			
				35 Br Бром  | 
			
				36 Kr Криптон  | 
		
| 5 | 
				37 Rb Рубидий  | 
			
				38 Sr Стронций  | 
			
				39 Y Иттрий  | 
			
				40 Zr Цирконий  | 
			
				41 Nb Ниобий  | 
			
				42 Mo Молибден  | 
			
				(43) Tc Технеций  | 
			
				44 Ru Рутений  | 
			
				45 Rh Родий  | 
			
				46 Pd Палладий  | 
			
				47 Ag Серебро  | 
			
				48 Cd Кадмий  | 
			
				49 In Индий  | 
			
				50 Sn Олово  | 
			
				51 Sb Сурьма  | 
			
				52 Te Теллур  | 
			
				53 I Иод  | 
			
				54 Xe Ксенон  | 
		
| 6 | 
				55 Cs Цезий  | 
			
				56 Ba Барий  | 
			* | 
				72 Hf Гафний  | 
			
				73 Ta Тантал  | 
			
				74 W Вольфрам  | 
			
				75 Re Рений  | 
			
				76 Os Осмий  | 
			
				77 Ir Иридий  | 
			
				78 Pt Платина  | 
			
				79 Au Золото  | 
			
				80 Hg Ртуть  | 
			
				81 Tl Таллий  | 
			
				82 Pb Свинец  | 
			
				83 Bi Висмут  | 
			
				(84) Po Полоний  | 
			
				(85) At Астат  | 
			
				86 Rn Радон  | 
		
| 7 | 
				87 Fr Франций  | 
			
				88 Ra Радий  | 
			** | 
				(104) Rf Резерфордий  | 
			
				(105) Db Дубний  | 
			
				(106) Sg Сиборгий  | 
			
				(107) Bh Борий  | 
			
				(108) Hs Хассий  | 
			
				(109) Mt Мейтнерий  | 
			
				(110) Ds Дармштадтий  | 
			
				(111) Rg Рентгений  | 
			
				(112) Cp Коперниций  | 
			
				(113) Uut Унунтрий  | 
			
				(114) Uuq Унунквадий  | 
			
				(115) Uup Унунпентий  | 
			
				(116) Uuh Унунгексий  | 
			
				(117) Uus Унунсептий  | 
			
				(118) Uuo Унуноктий  | 
		
| 8 | 
				(119) Uue Унуненний  | 
			
				(120) Ubn Унбинилий  | 
			||||||||||||||||
| Лантаноиды * | 
				57 La Лантан  | 
			
				58 Ce Церий  | 
			
				59 Pr Празеодим  | 
			
				60 Nd Неодим  | 
			
				(61) Pm Прометий  | 
			
				62 Sm Самарий  | 
			
				63 Eu Европий  | 
			
				64 Gd Гадолиний  | 
			
				65 Tb Тербий  | 
			
				66 Dy Диспрозий  | 
			
				67 Ho Гольмй  | 
			
				68 Er Эрбий  | 
			
				69 Tm Тулий  | 
			
				70 Yb Иттербий  | 
			
				71 Lu Лютеций  | 
			|||
| Актиноиды ** | 
				89 Ac Актиний  | 
			
				90 Th Торий  | 
			
				91 Pa Протактиний  | 
			
				92 U Уран  | 
			
				(93) Np Нептуний  | 
			
				(94) Pu Плутоний  | 
			
				(95) Am Америций  | 
			
				(96) Cm Кюрий  | 
			
				(97) Bk Берклий  | 
			
				(98) Cf Калифорний  | 
			
				(99) Es Эйнштейний  | 
			
				(100) Fm Фермий  | 
			
				(101) Md Менделевий  | 
			
				(102) No Нобелей  | 
			
				(103) Lr Лоуренсий  | 
		|||
| Щелочные металлы | Щёлочноземельные металлы | Лантаноиды | Актиноиды | Переходные металлы | 
| Лёгкие металлы | Полуметаллы | Неметаллы | Галогены | Инертные газы |